Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(13): 9252-9260, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38500259

RESUMEN

The rapid spread of antimicrobial resistance across bacterial pathogens poses a serious risk to the efficacy and sustainability of available treatments. This puts pressure on research concerning the development of new drugs. Here, we present an in-cell NMR-based research strategy to monitor the activity of the enzymes located in the periplasmic space delineated by the inner and outer membranes of Gram-negative bacteria. We demonstrate its unprecedented analytical power in monitoring in situ and in real time (i) the hydrolysis of ß-lactams by ß-lactamases, (ii) the interaction of drugs belonging to the ß-lactam family with their essential targets, and (iii) the binding of inhibitors to these enzymes. We show that in-cell NMR provides a powerful analytical tool for investigating new drugs targeting the molecular components of the bacterial periplasm.


Asunto(s)
Antibacterianos , Periplasma , Antibacterianos/farmacología , Antibacterianos/metabolismo , Periplasma/metabolismo , Bacterias , beta-Lactamas , beta-Lactamasas/metabolismo , Espectroscopía de Resonancia Magnética
2.
Nat Microbiol ; 9(3): 647-656, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38443580

RESUMEN

(p)ppGpp is a nucleotide alarmone that controls bacterial response to nutrient deprivation. Since elevated (p)ppGpp levels confer mecillinam resistance and are essential for broad-spectrum ß-lactam resistance as mediated by the ß-lactam-insensitive transpeptidase YcbB (LdtD), we hypothesized that (p)ppGpp might affect cell wall peptidoglycan metabolism. Here we report that (p)ppGpp-dependent ß-lactam resistance does not rely on any modification of peptidoglycan metabolism, as established by analysis of Escherichia coli peptidoglycan structure using high-resolution mass spectrometry. Amino acid substitutions in the ß or ß' RNA polymerase (RNAP) subunits, alone or in combination with the CRISPR interference-mediated downregulation of three of seven ribosomal RNA operons, were sufficient for resistance, although ß-lactams have no known impact on the RNAP or ribosomes. This implies that modifications of RNAP and ribosome functions are critical to prevent downstream effects of the inactivation of peptidoglycan transpeptidases by ß-lactams.


Asunto(s)
Guanosina Pentafosfato , Peptidoglicano , Amdinocilina , Pared Celular , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/genética
3.
Nat Commun ; 14(1): 4268, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37460557

RESUMEN

Penicillin-binding proteins (PBPs) are essential for the formation of the bacterial cell wall. They are also the targets of ß-lactam antibiotics. In Enterococcus faecium, high levels of resistance to ß-lactams are associated with the expression of PBP5, with higher levels of resistance associated with distinct PBP5 variants. To define the molecular mechanism of PBP5-mediated resistance we leveraged biomolecular NMR spectroscopy of PBP5 - due to its size (>70 kDa) a challenging NMR target. Our data show that resistant PBP5 variants show significantly increased dynamics either alone or upon formation of the acyl-enzyme inhibitor complex. Furthermore, these variants also exhibit increased acyl-enzyme hydrolysis. Thus, reducing sidechain bulkiness and expanding surface loops results in increased dynamics that facilitates acyl-enzyme hydrolysis and, via increased ß-lactam antibiotic turnover, facilitates ß-lactam resistance. Together, these data provide the molecular basis of resistance of clinical E. faecium PBP5 variants, results that are likely applicable to the PBP family.


Asunto(s)
Antibacterianos , Hexosiltransferasas , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Resistencia betalactámica/genética , Monobactamas , beta-Lactamas/farmacología , Pruebas de Sensibilidad Microbiana
4.
Microbiol Spectr ; 11(4): e0521722, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37255442

RESUMEN

Peptidoglycan is an essential component of the bacterial cell envelope that sustains the turgor pressure of the cytoplasm, determines cell shape, and acts as a scaffold for the anchoring of envelope polymers such as lipoproteins. The final cross-linking step of peptidoglycan polymerization is performed by classical d,d-transpeptidases belonging to the penicillin-binding protein (PBP) family and by l,d-transpeptidases (LDTs), which are dispensable for growth in most bacterial species and whose physiological functions remain elusive. In this study, we investigated the contribution of LDTs to cell envelope synthesis in Pseudomonas aeruginosa grown in planktonic and biofilm conditions. We first assigned a function to each of the three P. aeruginosa LDTs by gene inactivation in P. aeruginosa, heterospecific gene expression in Escherichia coli, and, for one of them, direct determination of its enzymatic activity. We found that the three P. aeruginosa LDTs catalyze peptidoglycan cross-linking (LdtPae1), the anchoring of lipoprotein OprI to the peptidoglycan (LdtPae2), and the hydrolysis of the resulting peptidoglycan-OprI amide bond (LdtPae3). Construction of a phylogram revealed that LDTs performing each of these three functions in various species cannot be assigned to distinct evolutionary lineages, in contrast to what has been observed with PBPs. We showed that biofilm, but not planktonic bacteria, displayed an increase proportion of peptidoglycan cross-links formed by LdtPae1 and a greater extent of OprI anchoring to peptidoglycan, which is controlled by LdtPae2 and LdtPae3. Consistently, deletion of each of the ldt genes impaired biofilm formation and potentiated the bactericidal activity of EDTA. These results indicate that LDTs contribute to the stabilization of the bacterial cell envelope and to the adaptation of peptidoglycan metabolism to growth in biofilm. IMPORTANCE Active-site cysteine LDTs form a functionally heterologous family of enzymes that contribute to the biogenesis of the bacterial cell envelope through formation of peptidoglycan cross-links and through the dynamic anchoring of lipoproteins to peptidoglycan. Here, we report the role of three P. aeruginosa LDTs that had not been previously characterized. We show that these enzymes contribute to resistance to the bactericidal activity of EDTA and to the adaptation of cell envelope polymers to conditions that prevail in biofilms. These results indicate that LDTs should be considered putative targets in the development of drug-EDTA associations for the control of biofilm-related infections.


Asunto(s)
Peptidil Transferasas , Peptidil Transferasas/genética , Peptidil Transferasas/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Peptidoglicano/metabolismo , Ácido Edético , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/metabolismo , Escherichia coli/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
5.
ChemMedChem ; 18(9): e202300077, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36779293

RESUMEN

Ruthenium(II) alkyne azide cycloaddition (RuAAC) is an attractive reaction to access 1,5-triazole derivatives and is applicable to internal alkynes. Here, we explore RuAAC to introduce molecular diversity on the diazabicyclooctane (DBO) scaffold of ß-lactamase inhibitors. The methodology presented is fully regioselective and enabled synthesis of a series of 1,5-triazole DBOs and trisubstituted analogues. Molecular modelling and biological evaluation revealed that the DBO substituents provided putative stabilizing interactions in the active site of broad-spectrum ß-lactamase KPC-2 and promising activity against a hyperpermeable strain of Escherichia coli producing KPC-2.


Asunto(s)
Rutenio , Inhibidores de beta-Lactamasas , Inhibidores de beta-Lactamasas/química , Rutenio/farmacología , Rutenio/química , Reacción de Cicloadición , Azidas , Triazoles/química , Catálisis , Alquinos
6.
Microbiol Spectr ; : e0422722, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36815772

RESUMEN

Cell wall glycopolymers (CWPGs) in Gram-positive bacteria have been reported to be involved in several bacterial processes. These polymers, pillars for proteins and S-layer, are essential for the bacterial surface setup, could be essential for growth, and, in pathogens, participate most often in virulence. CWGPs are covalently anchored to peptidoglycan by proteins that belong to the LytR-CpsA-PSr (LCP) family. This anchoring, important for growth, was reported as essential for some bacteria such as Bacillus subtilis, but the reason why CWGP anchoring is essential remains unknown. We studied LcpA and LcpB of Clostridioides difficile and showed that they have a redundant activity. To delete both lcp genes, we set up the first conditional-lethal mutant method in C. difficile and showed that polysaccharide II (PSII) anchoring at the bacterial surface is essential for C. difficile survival. In the conditional-lethal mutant, C. difficile morphology was impaired, suggesting that peptidoglycan synthesis was affected. Because Lcp proteins are transferring CWPGs from the C55-undecaprenyl phosphate (also needed in the peptidoglycan synthesis process), we assumed that there was competition between PSII and peptidoglycan synthesis pathways. We confirmed that UDP-MurNAc-pentapeptide precursor was accumulated, showing that peptidoglycan synthesis was blocked. Our results provide an explanation for the essentiality of PSII anchoring in C. difficile and suggest that the essentiality of the anchoring of CWPGs in other bacteria can also be explained by the blocking of peptidoglycan synthesis. To conclude, our results suggest that Lcps are potential new targets to combat C. difficile infection. IMPORTANCE Cell wall glycopolymers (CWGPs) in Gram-positive bacteria have been reported to be involved in several bacterial processes. CWGP anchoring to peptidoglycan is important for growth and virulence. We set up the first conditional-lethal mutant method in Clostridioides difficile to study LcpA and LcpB involved in the anchoring of CWPGs to peptidoglycan. This study offers new tools to reveal the role of essential genes in C. difficile. LcpA and LcpB activity was shown to be essential, suggesting that they are potential new targets to combat C. difficile infection. In this study, we also showed that there is competition between the polysaccharide II synthesis pathway and peptidoglycan synthesis that probably exists in other Gram-positive bacteria. A better understanding of these mechanisms allows us to define the Lcp proteins as a therapeutic target for potential design of novel antibiotics against pathogenic Gram-positive bacteria.

7.
Antimicrob Agents Chemother ; 67(2): e0087122, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36719223

RESUMEN

Ampicillin-ceftriaxone has become a first-line therapy for Enterococcus faecalis endocarditis. We characterized the penicillin-binding protein (PBP) profiles of various E. faecalis strains and tested for synergy to better inform beta-lactam options for the treatment of E. faecalis infections. We assessed the affinity of PBP2B from elevated-MIC strain E. faecalis LS4828 compared to type strain JH2-2 using the fluorescent beta-lactam Bocillin FL. We also characterized pbp4 and pbpA structures and PBP4 and PBP2B expression and used deletion and complementation studies to assess the impact of PBP2B on the levels of resistance. We tested penicillin-susceptible and -resistant E. faecalis isolates against ceftriaxone or ceftaroline combinations with other beta-lactams in 24-h time-kill studies. Two penicillin-susceptible strains (JH2-2 and L2052) had identical pbp sequences and similar PBP expression levels. One reduced-penicillin-susceptibility strain (L2068) had pbp sequences identical to those of the susceptible strains but expressed more PBP4. The second decreased-penicillin-susceptibility strain (LS4828) had amino acid substitutions in both PBP4 and PBP2B and expressed increased quantities of both proteins. PBP2B did not appear to contribute significantly to the elevated beta-lactam MICs. No synergy was demonstrable against the strains with both mutated PBPs and increased expression (L2068 and LS4828). Meropenem plus ceftriaxone or ertapenem plus ceftriaxone demonstrated the most consistent synergistic activity. PBP2B of strain LS4828 does not contribute significantly to reduced penicillin susceptibility. Neither the MIC nor the level of PBP expression correlated directly with the identified synergistic combinations when tested at static subinhibitory concentrations.


Asunto(s)
Enterococcus faecalis , beta-Lactamas , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/metabolismo , beta-Lactamas/farmacología , beta-Lactamas/metabolismo , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Ceftriaxona/farmacología , Penicilinas/farmacología , Penicilinas/metabolismo , Pruebas de Sensibilidad Microbiana , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo
8.
Nat Commun ; 13(1): 7962, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575173

RESUMEN

The D,D-transpeptidase activity of penicillin-binding proteins (PBPs) is the well-known primary target of ß-lactam antibiotics that block peptidoglycan polymerization. ß-lactam-induced bacterial killing involves complex downstream responses whose causes and consequences are difficult to resolve. Here, we use the functional replacement of PBPs by a ß-lactam-insensitive L,D-transpeptidase to identify genes essential to mitigate the effects of PBP inactivation by ß-lactams in actively dividing bacteria. The functions of the 179 conditionally essential genes identified by this approach extend far beyond L,D-transpeptidase partners for peptidoglycan polymerization to include proteins involved in stress response and in the assembly of outer membrane polymers. The unsuspected effects of ß-lactams include loss of the lipoprotein-mediated covalent bond that links the outer membrane to the peptidoglycan, destabilization of the cell envelope in spite of effective peptidoglycan cross-linking, and increased permeability of the outer membrane. The latter effect indicates that the mode of action of ß-lactams involves self-promoted penetration through the outer membrane.


Asunto(s)
Peptidil Transferasas , beta-Lactamas , beta-Lactamas/farmacología , beta-Lactamas/metabolismo , Peptidoglicano/metabolismo , Peptidil Transferasas/genética , Peptidil Transferasas/metabolismo , Escherichia coli/metabolismo , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Proteínas Bacterianas/metabolismo
9.
Antimicrob Agents Chemother ; 66(9): e0235721, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35943263

RESUMEN

Treatment of multidrug-resistant tuberculosis with combinations of carbapenems and ß-lactamase inhibitors carries risks for dysbiosis and for the development of resistances in the intestinal microbiota. Using Escherichia coli producing carbapenemase KPC-2 as a model, we show that carbapenems can be modified to obtain drugs that are inactive against E. coli but retain antitubercular activity. Furthermore, functionalization of the diazabicyclooctanes scaffold provided drugs that did not effectively inactivate KPC-2 but retained activity against Mycobacterium tuberculosis targets.


Asunto(s)
Carbapenémicos , Mycobacterium tuberculosis , Antibacterianos/farmacología , Proteínas Bacterianas/farmacología , Carbapenémicos/farmacología , Escherichia coli , Meropenem/farmacología , Pruebas de Sensibilidad Microbiana , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/farmacología
10.
Elife ; 112022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35678393

RESUMEN

Antibiotics of the ß-lactam (penicillin) family inactivate target enzymes called D,D-transpeptidases or penicillin-binding proteins (PBPs) that catalyze the last cross-linking step of peptidoglycan synthesis. The resulting net-like macromolecule is the essential component of bacterial cell walls that sustains the osmotic pressure of the cytoplasm. In Escherichia coli, bypass of PBPs by the YcbB L,D-transpeptidase leads to resistance to these drugs. We developed a new method based on heavy isotope labeling and mass spectrometry to elucidate PBP- and YcbB-mediated peptidoglycan polymerization. PBPs and YcbB similarly participated in single-strand insertion of glycan chains into the expanding bacterial side wall. This absence of any transpeptidase-specific signature suggests that the peptidoglycan expansion mode is determined by other components of polymerization complexes. YcbB did mediate ß-lactam resistance by insertion of multiple strands that were exclusively cross-linked to existing tripeptide-containing acceptors. We propose that this undocumented mode of polymerization depends upon accumulation of linear glycan chains due to PBP inactivation, formation of tripeptides due to cleavage of existing cross-links by a ß-lactam-insensitive endopeptidase, and concerted cross-linking by YcbB.


Asunto(s)
Peptidil Transferasas , Antibacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Escherichia coli/metabolismo , Marcaje Isotópico , Espectrometría de Masas , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano/metabolismo , Peptidil Transferasas/metabolismo , beta-Lactamas/metabolismo
11.
Org Lett ; 23(20): 7755-7758, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34613747

RESUMEN

We explored the traceless Staudinger ligation for the functionalization of the C2 position of second generation ß-lactamase inhibitors based on a diazabicyclooctane (DBO) scaffold. Our strategy is based on the synthesis of phosphine phenol esters and their ligation to an azido-containing precursor. Biological evaluation showed that this route provided access to a DBO that proved to be superior to commercial relebactam for inhibition of two of the five ß-lactamases that were tested.


Asunto(s)
Compuestos Aza/química , Azidas/química , Ciclooctanos/química , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/química , Compuestos Aza/metabolismo , Ciclooctanos/metabolismo , Ésteres , Estructura Molecular , Fosfinas/química , Inhibidores de beta-Lactamasas/química , beta-Lactamasas/metabolismo
12.
EMBO J ; 40(19): e108126, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34382698

RESUMEN

Bacteria resist to the turgor pressure of the cytoplasm through a net-like macromolecule, the peptidoglycan, made of glycan strands connected via peptides cross-linked by penicillin-binding proteins (PBPs). We recently reported the emergence of ß-lactam resistance resulting from a bypass of PBPs by the YcbB L,D-transpeptidase (LdtD), which form chemically distinct 3→3 cross-links compared to 4→3 formed by PBPs. Here we show that peptidoglycan expansion requires controlled hydrolysis of cross-links and identify among eight endopeptidase paralogues the minimum enzyme complements essential for bacterial growth with 4→3 (MepM) and 3→3 (MepM and MepK) cross-links. Purified Mep endopeptidases unexpectedly displayed a 4→3 and 3→3 dual specificity implying recognition of a common motif in the two cross-link types. Uncoupling of the polymerization of glycan chains from the 4→3 cross-linking reaction was found to facilitate the bypass of PBPs by YcbB. These results illustrate the plasticity of the peptidoglycan polymerization machinery in response to the selective pressure of ß-lactams.


Asunto(s)
Endopeptidasas/metabolismo , Escherichia coli/metabolismo , Peptidoglicano/biosíntesis , Antibacterianos/farmacología , Catálisis , Endopeptidasas/química , Endopeptidasas/genética , Activación Enzimática , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Hidrólisis , Espectrometría de Masas , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Peptidil Transferasas/genética , Peptidil Transferasas/metabolismo , Resistencia betalactámica
13.
Chemistry ; 27(28): 7687-7695, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-33792096

RESUMEN

ß-Lactams, the cornerstone of antibiotherapy, inhibit multiple and partially redundant targets referred to as transpeptidases or penicillin-binding proteins. These enzymes catalyze the essential cross-linking step of the polymerization of cell wall peptidoglycan. The understanding of the mechanisms of action of ß-lactams and of resistance to these drugs requires the development of reliable methods to characterize their targets. Here, we describe an activity-based purification method of ß-lactam targets based on click and release chemistry. We synthesized alkyne-carbapenems with suitable properties with respect to the kinetics of acylation of a model target, the Ldtfm L,D-transpeptidase, the stability of the resulting acylenzyme, and the reactivity of the alkyne for the cycloaddition of an azido probe containing a biotin moiety for affinity purification and a bioorthogonal cleavable linker. The probe provided access to the fluorescent target in a single click and release step.


Asunto(s)
Peptidil Transferasas , beta-Lactamas , Antibacterianos , Carbapenémicos , Química Clic , Proteínas de Unión a las Penicilinas , Peptidoglicano
14.
Curr Protoc ; 1(2): e42, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33591622

RESUMEN

Staudinger ligation is an attractive bioorthogonal reaction for use in studying biomolecules due to its capacity to form a native amide bond between a tag and a biomolecule. Here, we explore the traceless variant of the Staudinger ligation for 3'-end modification of oligoribonucleotides. The procedure involves (i) synthesis of phosphine-containing reactive groups, affinity purification tags, or photoactivatable benzophenone probe, (ii) synthesis of 2'-azido dinucleotides and 24-nt RNA, and (iii) traceless Staudinger ligation experiments. Each phosphine was characterized by 1 H, 13 C, and 31 P NMR and high-resolution spectrometry and the functionalized nucleotides were characterized by LC/MS. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of phosphines Basic Protocol 2: Synthesis of dinucleotides 4 and 5 Basic Protocol 3: Synthesis of modified RNA 6 Basic Protocol 4: Traceless Staudinger reactions on a dinucleotide Basic Protocol 5: Traceless Staudinger reaction on RNA.


Asunto(s)
Azidas , ARN , Amidas
15.
Chemistry ; 27(10): 3542-3551, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33336443

RESUMEN

The carbapenem class of ß-lactams has been optimized against Gram-negative bacteria producing extended-spectrum ß-lactamases by introducing substituents at position C2. Carbapenems are currently investigated for the treatment of tuberculosis as these drugs are potent covalent inhibitors of l,d-transpeptidases involved in mycobacterial cell wall assembly. The optimization of carbapenems for inactivation of these unusual targets is sought herein by exploiting the nucleophilicity of the C8 hydroxyl group to introduce chemical diversity. As ß-lactams are structure analogs of peptidoglycan precursors, the substituents were chosen to increase similarity between the drug and the substrate. Fourteen peptido-carbapenems were efficiently synthesized. They were more effective than the reference drug, meropenem, owing to the positive impact of a phenethylthio substituent introduced at position C2 but the peptidomimetics added at position C8 did not further improve the activity. Thus, position C8 can be modified to modulate the pharmacokinetic properties of highly efficient carbapenems.


Asunto(s)
Carbapenémicos/química , Antibacterianos/farmacología , Pared Celular , Meropenem , Peptidoglicano , Peptidil Transferasas
16.
Nucleic Acids Res ; 49(2): 684-699, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33367813

RESUMEN

The sequence of tRNAs is submitted to evolutionary constraints imposed by their multiple interactions with aminoacyl-tRNA synthetases, translation elongation factor Tu in complex with GTP (EF-Tu•GTP), and the ribosome, each being essential for accurate and effective decoding of messenger RNAs. In Staphylococcus aureus, an additional constraint is imposed by the participation of tRNAGly isoacceptors in the addition of a pentaglycine side chain to cell-wall peptidoglycan precursors by transferases FmhB, FemA and FemB. Three tRNAGly isoacceptors poorly interacting with EF-Tu•GTP and the ribosome were previously identified. Here, we show that these 'non-proteogenic' tRNAs are preferentially recognized by FmhB based on kinetic analyses and on synthesis of stable aminoacyl-tRNA analogues acting as inhibitors. Synthesis of chimeric tRNAs and of helices mimicking the tRNA acceptor arms revealed that this discrimination involves identity determinants exclusively present in the D and T stems and loops of non-proteogenic tRNAs, which belong to an evolutionary lineage only present in the staphylococci. EF-Tu•GTP competitively inhibited FmhB by sequestration of 'proteogenic' aminoacyl-tRNAs in vitro. Together, these results indicate that competition for the Gly-tRNAGly pool is restricted by both limited recognition of non-proteogenic tRNAs by EF-Tu•GTP and limited recognition of proteogenic tRNAs by FmhB.


Asunto(s)
Peptidoglicano/biosíntesis , ARN Bacteriano/metabolismo , ARN de Transferencia de Glicerina/metabolismo , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Unión Competitiva , Pared Celular/metabolismo , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Factor Tu de Elongación Peptídica/metabolismo , Unión Proteica
17.
Org Lett ; 22(20): 8034-8038, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-32996771

RESUMEN

Staudinger ligation is an attractive bio-orthogonal reaction that has been widely used to tag proteins, carbohydrates, and nucleic acids. Here, we explore the traceless variant of the Staudinger ligation for 3'-end modification of oligoribonucleotides. An azido-containing dinucleotide was used to study the ligation. Nine phosphines containing reactive groups, affinity purification tags, or photoswitch probes have been successfully obtained. The corresponding modified dinucleotides were synthesized and characterized by LC/MS. Mechanistic interpretations of the reaction are proposed, in particular, the unprecedented formation of an oxazaphospholane nucleotide derivative, which was favored by the vicinal position of 2'-N3 and 3'-OH functional groups on the terminal ribose has been observed. The post-functionalization of a 24-nt RNA with a photoactivable tag is also reported.


Asunto(s)
Azidas/química , Carbohidratos/química , Fosfinas/química , ARN/química , Fenómenos Bioquímicos , Estructura Molecular
18.
Front Microbiol ; 11: 1248, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32655524

RESUMEN

As ß-lactams are reconsidered for the treatment of tuberculosis (TB), their targets are assumed to be peptidoglycan transpeptidases, as verified by adduct formation and kinetic inhibition of Mycobacterium tuberculosis (Mtb) transpeptidases by carbapenems active against replicating Mtb. Here, we investigated the targets of recently described cephalosporins that are selectively active against non-replicating (NR) Mtb. NR-active cephalosporins failed to inhibit recombinant Mtb transpeptidases. Accordingly, we used alkyne analogs of NR-active cephalosporins to pull down potential targets through unbiased activity-based protein profiling and identified over 30 protein binders. None was a transpeptidase. Several of the target candidates are plausibly related to Mtb's survival in an NR state. However, biochemical tests and studies of loss of function mutants did not identify a unique target that accounts for the bactericidal activity of these beta-lactams against NR Mtb. Instead, NR-active cephalosporins appear to kill Mtb by collective action on multiple targets. These results highlight the ability of these ß-lactams to target diverse classes of proteins.

19.
J Med Chem ; 63(10): 5257-5273, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32242415

RESUMEN

Second-generation ß-lactamase inhibitors containing a diazabicyclooctane (DBO) scaffold restore the activity of ß-lactams against pathogenic bacteria, including those producing class A, C, and D enzymes that are not susceptible to first-generation inhibitors containing a ß-lactam ring. Here, we report optimization of a synthetic route to access triazole-containing DBOs and biological evaluation of a series of 17 compounds for inhibition of five ß-lactamases representative of enzymes found in pathogenic Gram-negative bacteria. A strong correlation (Spearman coefficient of 0.87; p = 4.7 × 10-21) was observed between the inhibition efficacy of purified ß-lactamases and the potentiation of ß-lactam antibacterial activity, indicating that DBO functionalization did not impair penetration. In comparison to reference DBOs, avibactam and relebactam, our compounds displayed reduced efficacy, likely due to the absence of hydrogen bonding with a conserved asparagine residue at position 132. This was partially compensated for by additional interactions involving certain triazole substituents.


Asunto(s)
Antibacterianos/farmacología , Compuestos Aza/farmacología , Ciclooctanos/farmacología , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/metabolismo , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/metabolismo , Antibacterianos/química , Compuestos Aza/química , Ciclooctanos/química , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/metabolismo , Pruebas de Sensibilidad Microbiana/métodos , Inhibidores de beta-Lactamasas/química , beta-Lactamasas/aislamiento & purificación
20.
Artículo en Inglés | MEDLINE | ID: mdl-32253219

RESUMEN

Chromosomal and plasmid-borne AmpC cephalosporinases are a major resistance mechanism to ß-lactams in Enterobacteriaceae and Pseudomonas aeruginosa The new ß-lactamase inhibitor avibactam effectively inhibits class C enzymes and can fully restore ceftazidime susceptibility. The conserved amino acid residue Asn346 of AmpC cephalosporinases directly interacts with the avibactam sulfonate. Disruption of this interaction caused by the N346Y amino acid substitution in Citrobacter freundii AmpC was previously shown to confer resistance to the ceftazidime-avibactam combination (CAZ-AVI). The aim of this study was to phenotypically and biochemically characterize the consequences of the N346Y substitution in various AmpC backgrounds. Introduction of N346Y into Enterobacter cloacae AmpC (AmpCcloacae), plasmid-mediated DHA-1, and P. aeruginosa PDC-5 led to 270-, 12,000-, and 79-fold decreases in the inhibitory efficacy (k2/Ki ) of avibactam, respectively. The kinetic parameters of AmpCcloacae and DHA-1 for ceftazidime hydrolysis were moderately affected by the substitution. Accordingly, AmpCcloacae and DHA-1 harboring N346Y conferred CAZ-AVI resistance (MIC of ceftazidime of 16 µg/ml in the presence of 4 µg/ml of avibactam). In contrast, production of PDC-5 N346Y was associated with a lower MIC (4 µg/ml) since this ß-lactamase retained a higher inactivation efficacy by avibactam in comparison to AmpCcloacae N346Y. For FOX-3, the I346Y substitution did not reduce the inactivation efficacy of avibactam and the substitution was highly deleterious for ß-lactam hydrolysis, including ceftazidime, preventing CAZ-AVI resistance. Since AmpCcloacae and DHA-1 display substantial sequence diversity, our results suggest that loss of hydrogen interaction between Asn346 and avibactam could be a common mechanism of acquisition of CAZ-AVI resistance.


Asunto(s)
Compuestos de Azabiciclo , Ceftazidima , Antibacterianos/farmacología , Compuestos de Azabiciclo/farmacología , Proteínas Bacterianas , Ceftazidima/farmacología , Combinación de Medicamentos , Pruebas de Sensibilidad Microbiana , beta-Lactamasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...